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Abstract—Self-driving vehicle is a popular and promising
field in artificial intelligence. Conventional architecture consists
of multiple sensors, which work collaboratively to sense the
units on road to yield a precise and safe driving strategy.
Besides the precision and safety, the quickness of decision is
also a major concern. In order to react quickly, the vehicle
need to predict its next possible action, such as acceleration,
brake and steering angle, according to its latest few actions and
status. In this paper, we treat this decision-making problem as
a regression problem and use deep gaussian process to predict
its next action. The regression model is trained using simu-
lation data sets and accurately captures the most significant
features. Combined with rule-based method, it can be used
in Torcs simulation engine to realize successful loop trip on
virtual roads. The proposed method outperforms the existing
reinforcement learning methods on the performance indicators
of time consumption and the size of data volume. It may be
useful for real road tests in the future.

Keywords-gaussian process; kernel function; rule-based;
decision-making

I. INTRODUCTION

Self-driving vehicle is one of the most promising fields

of artificial intelligence. To realize safety driving on the

real road, ego-vehicles need to recognize and track the

objects with its perceptual equipment, as well as act properly

according to the current road conditions with decision-

making modules. The decision-making module is not only

the most important but also the challenging part to achieve.

The core tasks include action prediction, obstacle avoidance,

trajectory planning and so on [1]. As a classical and robust

tool for dynamic modeling, finite state model is wildly

used in the conventional decision-making modeling of self-

driving. It summarizes the events, which decide the action

of unmanned cars, and divides them into finite states. Each

action represents a specific control over the car. Building

the decision-making model with rule-based [2] or statistical

method [3] are two popular schemes. Rule-based methods

can achieve functionality quickly, but they are confined by

the incomplete sets of state and the inability of capturing

uncertainty. These shortcomings are overcome by combining

with statistical methods. In addition, with the advent of

simulation engines like Carla [4] and Torcs [5], various

methods based on reinforcement learning [6] are proposed

in the decision-making research and achieve satisfactory

performances. Although reinforcement learning is wildly

used in the visual game engine, it is far from real road test

and the stability also need to be further strengthened.

In recent years, Gaussian process (GP) and deep gaus-

sian process (deep GP) regression have become prevailing

regression techniques [7, 8]. To be precise, a GP is a

distribution over functions such that any finite set of function

values have a joint Gaussian distribution. The obtained mean

function and covariance function are used for regression

and uncertainty estimation, respectively. The strength of GP

regression lies in avoiding overfitting while still finding func-

tions complex enough to describe any observed behavior,

even in noisy or unstructured data. GP is usually applied

to the situation when observations are rare or expensive to

produce and methods like deep learning perform poorly. And

it has been applied among a wide range from robotics [9],

biology [10], global optimization [11], astrophysics [12] to

engineering [13]. A deep GP consists of a cascade of hidden

layers of latent variables where each node acts as output for

the layer above and as input for the layer below. GPs govern

the mappings between the layers with their own kernels.

Damianou and Lawrence [14] showed that the probabilistic

nature of deep GP guards against overfitting and it is flexible

and robust enough to model complex data.

Based on the analysis above, in this paper, we propose

a decision-making framework combining deep GP and rule-

based methods. The model is trained with small data in Torcs

and tested in Torcs. The rest of the paper is organized as fol-

lows. In Sec. II, we give a introduction to the GP method. In

Sec. III, we explain our method for decision-making problem

thoroughly. Finally, we make some necessary discussions

and give our conclusions in Sec. IV and V, respectively.

II. GAUSSIAN PROCESS

GP prior over function f(x) implies that any set of

function values f , indexed by the input x, have a multivariate
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Gaussian distribution

p(f |x, θ) = N(f |0,Kf,f), (1)

where Kf,f is the covariance matrix. And it is always

denoted as f(x) ∼ GP(f |0,Kf,f). The knowledge about

mean value can be easily incorporated into the covariance

function, so the mean value for the GP is always set to be

zero. The covariance matrix is constructed by a covariance

function, [Kf,f ]i,j = k(xi,xj |θ), which characterizes the

correlation between different points in the process. Covari-

ance function can be chosen freely as long as the covariance

matrices produced are symmetric and positive semi-definite.

A common stationary covariance function is the squared

exponential

k(xi,xj |θ) = σ2
se exp(−

(xi − xj)
2

2l2
), (2)

where θ = [σse, l] are the hyper-parameters. σse is the scal-

ing parameter, and l is the length-scale parameter, governing

how fast the correlation decreases as the distance increases.

If the input is in multiple dimensions, a flexible way to

model functions with multidimensional input is to multiply

together kernels defined on each individual dimension. For

example, a product of squared exponential kernels over d-
dimension inputs is, each having a different length-scale

parameter,

k(xi,xj |θ) = σ2
se exp(−

d∑
k=1

(xi,k − xj,k)2
2l2k

). (3)

This is often called automatic relevance determination

squared exponential kernel, so named because the length-

scale parameters l1, l2, . . ., ld, implicitly determines the

relevance of each dimension. The input dimensions with

relatively large length-scales imply relatively little variation

along those dimensions in the function being modeled. Other

common used kernel functions can be found and discussed

in [15].

Assuming that we want to predict the values f̃ at new

input locations x̃. The joint prior for latent variables f and

f̃ is

p(

[
f

f̃

]
|x, x̃, θ) ∼ N

(
0,

[
Kf,f Kf ,̃f

Kf̃,f Kf̃ ,̃f

])
, (4)

where Kf,f = k(x,x|θ), Kf ,̃f = k(x, x̃|θ) and Kf̃ ,̃f =
k(x̃, x̃|θ). By definition of GP, the marginal distribution of

f̃ is p(f̃ |x̃, θ) = N(f̃ |0,Kf̃ ,̃f) similar to (6). The conditional

distribution of f̃ given f is

p(f̃ | f ,x, x̃, θ) ∼ N(Kf̃,f K
-1
f,f f ,Kf̃ ,̃f −Kf̃,f K

-1
f,f Kf ,̃f),

(5)

where the mean and covariance of the conditional distribu-

tion are functions of input vector x̃ and x serves as a fixed

parameter. Typically, it is more realistic that in our training

data, only the noisy observations are available rather than

the precise function value of f(x). Further, we assume that

each data point y is generated from the corresponding f(x)
by adding independent Gaussian noise:

y = f(x) + ε, (6)

where ε ∼ N(0, σI). In this case, we should incorporate this

noise into our model by adding noise σ to every diagonal

term in each covariance matrix which corresponds to a

kernel Kf,f = k(x,x|θ) + σI. Once the kernel is updated,

the analysis is identical as previously discussed. Now the

observation becomes y, and we are trying to predict ỹ with

new kernel Kf,f :

p(ỹ|y,x, x̃, θ) ∼ N(Kf̃,f K
-1
f,f y,Kf̃ ,̃f −Kf̃,f K

-1
f,f Kf ,̃f).

(7)

To use GP to solve the problem, we need to infer the

parameters in the model during training procedure. A crucial

character for GP is that we can calculate its marginal

likelihood, and it can help significantly for model selection.

To maximize the log marginal likelihood is a popular way

to tune kernel parameters. The marginal likelihood is, given

the parameters, p(D|θ, φ) = ∫
p(y| f , φ)p(f |x, θ)d f , where

θ and φ are for kernel and noise parameters, respectively.

With a Gaussian likelihood, it has an analytic closed-form

which gives the log marginal likelihood:

log p(D|θ, σ) = −n
2
log(2π)− 1

2
log |Kf,f +σ

2I|

− 1

2
yT(Kf,f +σ

2I)−1 y,
(8)

where n is the number of the input data. If the likelihood is

not Gaussian, the marginal likelihood needs to be approxi-

mated. Many approximate methods can be used, like Laplace

approximation [16], variational method [17] and sampling

method [18].

III. METHOD FOR DECISION-MAKING PROBLEM

In this section, the detailed description of applying GP in

decision-making process of self-driving is given. The whole

framework is presented in Fig. 1. First, the training data is

generated by interactions between network trained by deep

deterministic policy gradient (DDPG) algorithm [19] and the

simulated driving on CG road (the overview map in upright

corner in Fig. 1) in TORCS. Then, the data set is fed into a

multiple-layer GP, which is often called deep GP. The trained

deep GP model is used to predict the actions according

to the state feedbacks from TORCS. For validation, all

the generated actions are further filtered by a set of man-

made rules for feasibility and safety concerns. The refined

actions are then sent to TORCS to demonstrate visually the

performance on a loop trip. All the details of each procedure

are further explained in the following section.
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Figure 1: The framework of our method

A. data structure

We collect the training data by DDPG well-trained net-

work on the CG road in software TORCS. About 340 records

are collected during the loop trip simulation. The training

data consists of state set regarding sensor’s states and action

set from the controller in TORCS. The state set and action

set are represented by several variables presented in tables

I and table II, respectively. For deep GP network training,

the state set is the input and action set is the output. And

the raw data are fed into deep GP network with no need for

data processing before training. The data and demo will be

public online in the near future.

Table I: The information of state set

Name Range Detail description
ψ [-1,1] Angle between the car direction and track axis

direction
d1 [0, 1] Distance between the car and the track edge

in front of the car
d2 [−∞, ∞] Shift from the center line
v [−∞, ∞] Car speed in x, y, z direction
ω [0, ∞] The speed of four wheels
r [0, ∞] Gear speed

Table II: The information of action set

Commad Range Detail description
steering [-1,1] -1 and +1 mean full right and full left,

respectively
acceleration [0, 1] Virtual gas pedal (0 means no gas, 1 means

full gas)
brake [0, 1] Virtual brake pedal (0 means no brake, 1

means full brake)

B. deep gaussian process

As for this multidimensional input and output problem, we

use deep GP method to fit the training data in consideration

of its advantage over a standard GP [14]. An example of a

deep GP is a composition of vector-valued functions, with

Figure 2: Steer Value vs Times

each function drawn independently from GP priors [15]:

f (1:L)(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x)) . . . )) (9)

with each f ld ∼ GP
(
0, kld(x,x

′)
)
for f ld ∈ f l .

In addition to the input x and output y, there are L−1 hidden

layers. The input dimension, also known as the number of

units, of layer l is the output dimension of layer l−1, while

the output dimension of layer l is the number of functions

in f l. Thus, each function f ld ∈ f l takes as input a vector

whose dimension is the output dimension of layer l − 1,
and returns a scalar. In this case, we use famous package

GPy [20], which is developed by Sheffield machine learning

group, to do the simulation. We use two layers deep GP to

fit the training data. The kernels we used per layer are as

follows:

[StdPeriodic ∗RatQuad+RBF +White,

MLP ∗Matern52 +RBF +White],
(10)

all the function expressions corresponding to these function

names can be found in the GPy document webpage. The

number of inducing points we used is 200. After optimiza-

tion, the output action values are shown in Fig. 2, Fig. 3,

and Fig. 4. The true data and predicted mean value legend in

the figures mean the true training data action values and the

predicted values after finish training deep GP, respectively.

The green zone, with its margin depicted by the green dashed

line, in the figures represents the 95% credible interval of

the predicted value. The x-axis variable T imes represents

the steps of self-driving simulation. We can see that the deep

GP can capture the main features of the training data except

for some strong vibration zones. The further experiments

suggest that a more dedicated parameter tuning process will

improve the performance.

C. man-made rules

After training the deep GP model, all the parameters are

determined immediately. We try this model in TORCS, and
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Figure 3: Acceleration Value vs Times

Figure 4: Brake Value vs Times

we find that it can only finish about half loop trip on the

CG road. After analyzing the failed predictions and the

input data, we find the main cause is that the data from

DDPG well-trained network only contain the cases with

small ψ, and d2 which are close to the center. With the highly

deviated input, the trained deep GP generate unreasonable

action value. We assume that if the values of ψ and d2
stay in a reasonable range, the successful loop trip can be

achieved regardless of the values of other state variables.

With that being thought, we design extra logic rules for

these two variables. Specifically, a few critical values are set

for these two changing variable in the training data and the

steering values are also slightly tweaked by adding a specific

offset on the original values. And the effectiveness of the

adjustment has been approved by the simulation results of

the successful completion of loop trip on the CG road.

After all these things done, we can combine the deep

GP with rule-based method to do decision-making through

interaction with the surrounding environment. Deep GP

model generates a reasonable action according to the status

of vehicle at each step. After that, each action will be further

filtered by the rule-based model to validate the feasibility of

the value, resulting in either refining the action or ignoring

the suggested action since it fails the condition check in the

rule set. It turn out that our method can present a relatively

nice loop trip in simulation environment.

IV. DISCUSSION

In the section above, we achieve successful loop trip with

deep GP and rule-based method. Here, The performance is

compared with DDPG method. The reward function we used

is as follows:

vx ∗ cos(ψ) ∗ (1− sin(|ψ|)) ∗ (1− |d2|). (11)

The reward function can be constructed more reasonably by

including other related variabels [21]. After calculating the

rewards of these two methods, we find that our method needs

70 steps more to finish the loop trip and the total reward

is about 5000 less than the DDPG well-trained network.

However, the DDPG well-trained network, which is used

to get training data, costs about several dozens of hours

to train, and we only takes about 1.5 hours to train deep

GP model. It also needs much less time than well-trained

network with AMDDPG method according to the result in

the paper [21]. In DDPG and AMDDPG methods, they

need to interact with environment in each episode to update

the new training data, and this procedure will be repeated

for multiple times for exploration and exploitation. Thus,

these data-hungry approaches need tens of thousands of

data, but the training data we used only contains about 340

items, which is far more less than what is required. With

these benefits, we believe that this method is a promising

manner to be utilized in decision-making development in

both simulation environment and in real road condition.

However, there are many technical problems to tackle to

achieve the real road test. Admittedly, the shortcomings of

the proposed methods should also be acknowledged. In this

paper, we only test the method in a relative simple road. In a

complex road condition, it is obvious that more data should

be fed into deep GP network and the man-made rules also

need to be dedicatedly designed and validated.

To conclude, auxiliary rule-based approaches in our

method, though being widely adopted at the current stage,

are still not flexible and reliable solutions to the practical

self-driving technology. We hope to find a more flexible

method to solve the problem in a more mathematical and

general way. In our future research, we may use dynamical

bayesian network [22], bayesian structure time series model

[23] or other not data-hungry methods to solve the decision-

making problem in self-driving field with more complex

road environments.

V. CONCLUSION

In conclusion, we present a method which combines

deep gaussian process with rule-based method to solve self-
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driving decision-making problem in a simulation environ-

ment. Our method costs much less time and need much less

data than the DDPG well-trained network and can realize

successful loop trip in a relative simple road. We think this

method can be extended to do much more complex road

tests. In the future, we will be committed to developing

better methods for decision-making problem.
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